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Abstract— Perception of deformation is a key problem when
dealing with autonomous manipulation of deformable objects.
Particularly, this work is motivated by tasks where the manip-
ulated object follows a prescribed known deformation with the
goal of performing a desired coverage of the objects contour
along its deformation. The main contribution is a simple yet
effective novel perception system in which a team of robots
equipped with limited field-of-view cameras covers the object’s
contour according to a prescribed visibility objective. In order
to define a feasible visibility objective, we propose a new method
for obtaining the maximum achievable visibility of a contour
from a circumference around its centroid. Then, we define a
constrained optimization problem and we solve it iteratively
to compute the minimum number of cameras and their near-
optimal positions around the object that guarantee the visibility
objective, over the entire deformation process.

I. INTRODUCTION

There is an increasing interest on controlling deformation
of solid objects nowadays, specially for domestic and in-
dustrial purposes [1], [2], [3]. A requirement in this kind
of application is that perception of the object deformation
must be continuously feed back to the system, which may
be challenging due to the time-varying and highly-dynamic
behavior of deformable objects. We envision an application
in the context of industrial manipulation of deformable
objects, where the deformation guidelines are provided by
the particular task and known in advance. The perception
system must be able to check if the deformation is performed
as specified in the guidelines and evaluate the quality of the
process, adapting the perception to the evolution of deforma-
tion with an appropriate number of sensors placed at the most
convenient locations with respect to the object. Here, we
bring visibility into focus as the main tool for defining how
the perception task must be performed. Visibility problems
have been addressed from many different perspectives, but
in general they involve detecting some specific zones of the
environment according to a set of requirements, in terms of
accuracy and sensing resources.

A main classification of the approaches that deal with
visibility refers to the static or dynamic deployment of the
points of view and the time-invariant or time-dependent
nature of the perceived environment. Static deployment is
specially intended for applications in which the perceived
environment, and therefore its visibility properties, does not
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change substantially in time. Covering of 3D static surfaces
with a minimal set of observers is performed in [4] for mold
design, in [5] for surveillance and inspection tasks, and in [6]
for automated manufacturing. Many of these works are based
on selecting those points of view that achieve the visibility
objectives from a predefined set of candidate view directions
or viewpoints, which can be non-optimal.

Sensing with a single agent may require the system to be
dynamically deployed in 3D covering or shape reconstruction
tasks of static objects [7], [8], [9], and also in cooperative
coverage and target enclosing scenarios. In cooperative dy-
namic coverage one can find decentralized approaches, where
a generally large group of robots is requested to collectively
monitor a 2D static environment [10], or centralized ap-
proaches for smaller teams of robots that perform monitoring
of 3D static environments [11], [12]. Concerning target
enclosing, centralized [13] and decentralized [14] approaches
have been developed for multi-robot teams to perform,
either moving or static, targets enclosing. In particular, these
strategies pertain to the formation control field, and they do
not consider the minimization of the required sensors in the
case of a time-varying scenario.

Works in the active perception field are usually dynamic
in the sense that in order to get more information about
the environment, whose properties may change over time,
the sensors must reconfigure their position and/or orientation
depending on the requirements of the perception task. The
multi-camera centralized networks in [15] and [16] are
optimized in position and orientation so that they are able to
recover the shape of a moving and deformable target object,
but they do not consider robust perception aspects such as
occlusion avoidance.

Here, we present a method for performing a desired
coverage of a deforming 2D closed contour shape with a
minimal set of cameras. The main contributions of this work
are a new technique for obtaining the maximum achievable
visibility of a sampled contour from a prescribed distance,
the continuous search space formulation of the visibility
optimization problem with safe and robust perception cri-
teria, and the cameras set minimization over a complete
deformation process. To the best of our knowledge, this is the
first time a multi-camera perception system for deformable
objects is designed using this methodology.

II. PROBLEM STATEMENT

A. Framework

Let us consider a certain object of interest (‘object’ from
now on for brevity) in 2D which undergoes deformation over
time. With the purpose of sampling the object’s contour at
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Nd time instants tk (k = 1, ..., Nd), a set of Nck holonomic
mobile robots equipped with onboard cameras (i.e. the num-
ber of robots Nck is also the number of cameras) is placed
around the object’s contour centroid gk = (gXk, gY k) at
a safety distance ds from it. Each robot/camera cik ∈ Ck

(i = 1, ..., Nck), where Ck is the total set of cameras, is
represented by the tuple (ψik, φik). ψik is the angle around
gk in which the camera’s center is located and φik is the
orientation of the camera (see Fig. 1). Cameras are modeled
with restricted Field of View (FOV), with range and angular
constraints.

The following assumptions are made throughout the study:
Assumption 1: Object integrity. The object’s contour

continuity is preserved along the whole deformation process,
i.e. the process does not divide the object into different parts.

Assumption 2: Known information. The following infor-
mation is given or can be obtained:

1) Cameras are calibrated, and they acquire point clouds
Pik ⊂ R2 of the environment. Object detection and
segmentation are given from the point cloud PTk,
which is the fusion of all cameras data.

2) Positions of the robots with respect to a global refer-
ence cik = (ψik, φik) are known at any time.

3) The prescribed 2D reference contour of the object
as well as gk are known in advance at each tk
deformation instant.

Assumption 3: Small deformation. During the deforma-
tion process, it is assumed that the object’s deformation (i.e.
contour variations) between consecutive sampled instants is
small, and also the difference between the object’s deforma-
tion with respect to the reference object’s deformation (i.e.
reference contour variations).

Assumption 4: Slow deformation. Deformations are
slow enough so that the robots with the cameras have time
enough to react and follow the sequence of configuration
positions around the object.

These assumptions allow to create a set of reference
segments Sref by sampling the expected object contour
into Ns segments of length Ls, which will be utilized for
obtaining the distance of the detected points in PTk to it and
computing the perception error. Polygonal contour reference
segments sjk = {vjk, v(j+1)k}, where j = 1, ..., Ns − 1 and
for j = Ns, sNsk = {vNsk, v1k}, are defined by the position
of their two vertexes vjk and v(j+1)k. From now on, the k
subscript will be omitted in general for clarity purposes.

B. Optimization objectives of the visibility task

Given the previous setup and assumptions, the main objec-
tive is to obtain the near-optimal positions and orientations
of the robots in the circumference of radius ds centered at g
such that the visibility cost of the object is zero or near zero
at each optimization instant.

Definition 1: Visibility cost. We define the visibility cost

γv =

Ns∑
j=1

γvj , γvj =

{
ϑtj − ϑj if ϑtj ≥ ϑj

0 otherwise
. (1)

Fig. 1. Overview of the framework with the main geometric parameters.
The target object is at the center of the circumference, surrounded by six
different cameras with restricted FOV. Projection rays linking each camera
center to the vertexes of the object’s contour are drawn.

ϑ is a set in which each term ϑj provides the number
of cameras detecting each segment sj for a specific time
instant, and ϑt is the target visibility set in which each term
ϑtj indicates the number of cameras that must detect each
reference segment sj according to the task requirements.

Our definition of the visibility objective (or target vis-
ibility) allows to configure which contour segments must
be detected at each tk. For example, in case the whole
contour must be perceived by at least one camera ∀tk, then
ϑtj = 1, ∀j. If a higher quality or redundancy of sensing is
required in some areas of interest, we can require additional
sensing by increasing the value of ϑtj for a certain subset of
segments. Additionally to the main objective, we are also
interested in determining the minimum value of Nc that
accomplishes the desired visibility of the contour.

III. MAXIMUM ACHIEVABLE VISIBILITY

Before setting a feasible visibility objective, we need
information about which segments can actually be detected
by cameras placed at a distance ds from g.

Definition 2: Maximum achievable visibility. The max-
imum achievable visibility ϑmax of the object’s contour is a
set in which each term ϑmaxj

indicates whether the segment
sj can be detected or not by some specifically oriented
camera placed at a distance ds from g.

Given the prescribed evolution of each contour shape seg-
ment sj ∈ Sref along deformation, if no external occluders
are present, ϑmax is a priori known when the shape is convex
(full visibility), and a priori unknown when the shape is non-
convex. We present next the procedure to check whether a
segment sj is visible or not from a specific camera position.

Definition 3: Bi-partite visibility graph. We define the
bi-partite visibility graph [17]

Gv = (C,Sref ,E) , (2)



C = {c1, ..., ci, ..., Nc}, Sref = {s1, ..., sj , ..., Ns} , (3)

as the graph where a camera ci and each vertex of
sj(vj , v(j+1)) are linked with edges eij and ei(j+1) ∈ E
only if the edges, represented in the space as the lines
connecting ci to the vertexes vj and v(j+1), do not intersect
any obstacle’s segment, i.e. if the vertexes are visible from
ci.

In the following, we propose a method to solve the
problem of obtaining the maximum achievable visibility.

Proposition 1: The bi-partite visibility graph of the
obstacle-free framework where an infinite number of om-
nidirectional cameras (Nc = ∞) completely covers the
circumference of radius ds centered at g provides the exact
number of object’s segments which can be detected from that
distance. Each term of ϑmax takes then the values of ∞ or
0 depending on whether a segment is visible or not.

Proof: According to Definition 3, two edges eij and
ei(j+1) linking ci ∈ C and the vertexes vj and v(j+1) of
sj ∈ S exist only if the vertexes are visible from ci. Thus,
if a couple of edges exist such that eij = {ci, vj} and
ei(j+1) = {ci, v(j+1)}, then segment sj is visible. ϑmaxj

can be computed as

ϑmaxj =

Nc∑
i=1

{∃eij ∧ ∃ei(j+1)} , (4)

where the boolean outputs true and false are interpreted
as the integer values 1 and 0. Given that an omnidirectional
camera is able to cover any possible direction, that infinite
possible camera positions around the object are considered,
and that vertex positions are fixed, every possible edge will
be obtained. Therefore, every segment that can be detected
will be detected with this procedure.

Remark 1: Notice that a finite set of cameras must be
considered in practice to compute ϑmax. However, this
limitation is useful in order to obtain a measure of how
difficult it is to detect a certain segment in comparison with
the rest: the closer the value of ϑmaxj

to the cardinality of
the cameras set, the more possible locations can detect sj .

IV. MINIMIZATION OF THE NUMBER OF CAMERAS

A. Minimization problem

Once we have the contour visibility upper bound ϑmax
and therefore the knowledge about which segments can be
detected, we are able to define the target visibility set ϑt of
the coverage task. Then, the goal is obtaining the minimal
set of N∗

c cameras and their locations ψ∗
i and φ∗i such that

γv is also minimal (ideally zero), for a time instant tk.
We define the following optimization problem:

Given C(Nc),Sref

minimize
C(Nc)

γ = γv + γσ + γβ , (5)

subject to R

where γ is the cost function of the problem and R is the
set of camera and geometric restrictions. The additional

terms γσ and γβ will be explained in detail over the next
lines, and incorporate additional constraints that improve the
performance of the system.

The proposed pipeline is as follows. We set Nc = 2
(the minimum required number of cameras for completely
detecting a closed contour, without the help of external ele-
ments) and check γv after solving the optimization problem.
If γv > 0, we solve iteratively the problem for Nc = Nc+1
until γv = 0 or the maximum allowed number of robots
Ncmax

is reached. We define Ncmax
as the maximun number

of robots that can be physically placed without collisions in
the circumference around the object. Thus, it depends on
ds and the size of the robots. The optimization method we
utilize to solve this problem is the pattern search method
[18], which is a derivative-free technique compatible with
our function γ that always provides a minimum of the cost
function, though it may be a local one.

Contour segments detection is performed again building
the bi-partite visibility graph. However, we have to include
the cameras range and angular constraints into the optimiza-
tion problem. These constraints are introduced by including
additional conditions when building the bi-partite visibility
graph, as explained next.

Definition 4: Restricted visibility graph. We define the
restricted visibility graph as the bi-partite visibility graph in
which each edge lies within the FOV limits.

Thus, if the edge linking a vertex of the contour to a
camera ci has a length which is larger than Lmax, the
maximum range of the FOV, or forms an angle greater than
βmax

2 with the local axis xi, where βmax is the FOV’s
maximum angle, we determine that the vertex is not visible
from ci, and therefore the edge is not valid and excluded
from the graph.

In some cases, two robots are required to be close to each
other in order to detect certain segments of the contour, and
collisions may happen if its physical limits are surpassed.
The potential field approach is applied to penalize this as:

γσ =
1

(2d/dmin − 1)w

Ns∑
j=1

ϑtj , (6)

where d is the minimal distance between whichever two
neighboring robots of the system and dmin is the minimal
prescribed distance they should maintain to operate with
safety guarantees. This exponential function allows us to
introduce a positive contribution that takes values near zero
in case the robot is far enough from the rest and rises quickly
to the maximum value of γv when two of them approach
to dmin. The w > 0 exponent regulates the influence
distance of γσ , and its value is tuned depending on the safety
requirements of the task. Thus, if large camera separations
are preferred, small values of w must be selected. In addition
to this term, the following set of linear constraints is applied
to the optimization:

|ψi1 − ψi2 | ≥ ψmin, ∀i1, i2 = 1, ..., Nc, i1 6= i2 , (7)

where
ψmin = 4 arcsin (dmin / (4ds)) . (8)



This prevents two neighboring robots to be closer than dmin
under any circumstances, and limits the maximum number
of agents the system can admit to:

Ncmax
= truncation (2π / ψmin) . (9)

Robust perception, in terms of a stable and persistent
detection of the contour in the presence of deformation and
small unexpected movements of the robots or the object, is
a desired requirement of the system. Due to the fact that
surfaces that will be occluded first are the ones closer to
be aligned with the edges of the graph, we consider that
the greater the angle between two consecutive edges of the
restricted visibility graph, the more robust the perception is.
We incorporate this notion to the cost function as:

γβ = 1− 1

Nc · βmax

Nc∑
i=1

βmini
, (10)

where βmini is obtained by computing the minimum angle
between each pair of consecutive edges connecting the
camera ci to the vertexes of the segments it detects in the
restricted visibility graph. The maximum contribution of
γβ is limited by the contribution of not detecting a single
contour segment, due to the fact that detecting a segment
is considered always more important than detecting more
robustly or with a higher quality. Therefore, γβ can be
considered a fine tuning term.

Minimizing γβ implies that the minimum angles, and
therefore the shortest projected lengths of the segments, will
be increased, which will improve the quality of perception,
and it will also prevent to a higher extent the possible
occlusions that could appear during the deformation process.

B. Minimization algorithm for the deformation process

The optimization problem described in the previous sec-
tion provides a minimum number of cameras and their
configurations at the tk deformation instant. With the purpose
of obtaining N∗

c , the minimum required number of cameras
for the entire deformation process, the problem must be
solved for a set of tk such that Assumption 3 is still valid
from each instant to the following one. Once the problem
is solved and N∗

ck is obtained at each selected tk, we set
N∗
c to be equal to the maximum N∗

ck. This is a conservative
decision to get a trade-off between resources optimization
and robustness of the system against unexpected behaviors.
The final positions ψr and orientations φr of the cameras are
computed by optimizing at each selected tk instant with the
set of N∗

c cameras. These desired configurations are achieved
by the robots following a motion strategy that consists in
maintaining always the safety distance ds to gk, so that
collisions with the object are avoided. It is worth mentioning
that the initial input values for the optimization with N∗

c

cameras at the tk deformation instant are the positions and
orientations output by the optimization at the previous one.

Algorithm 1 shows the main steps of the cameras set
minimization over the entire deformation process. Rk, as
mentioned before, integrates the cameras FOV constraints
and the robots physical dimensions.

Algorithm 1 Estimate the minimum number of cameras.
1: N∗

c = 2
2: Set k to an initial value (k = 0)
3: while k ≤ Nd do
4: Initialize γk > 0
5: N∗

ck = 1
6: while (γk > 0) and (N∗

ck < Ncmax ) do
7: N∗

ck = N∗
ck + 1

8: Minimize γk(ψik, φik) s.t. Rk
9: end while

10: if N∗
ck > N∗

c then
11: N∗

c = N∗
ck

12: end if
13: Increase k
14: end while
15: return N∗

c

So far, our method is performed mainly offline, but we are
currently studying a new technique that will allow the cam-
eras to reposition themselves online in case the deformation
substantially differs from the planned one. This will prevent
visibility gaps (i.e. discontinuities larger than a threshold in
PT) and will extend, therefore, the validity of the method.

V. SIMULATION RESULTS

In order to validate our approach, we have performed a
series of simulations focusing on each of its main aspects.
The simulations are implemented in Matlab over different
shapes extracted from the well-known data set MPEG-7.
MPEG-7 data set includes 1400 silhouettes of 2D objects
grouped in 70 classes, 20 objects each [19], and it is very
popular to test shape descriptors among other applications.

We first evaluate the performance of our method for
obtaining the maximum achievable visibility of 2D sampled
shapes. The contour of the shape in each image is extracted
and sampled in 200 points. Then, we can represent each
contour with Ns = 200 segments. After this, we place a set
of Nc omnidirectional cameras around the contour centroid
at constant intervals, at a distance ds equal to the maximum
side of the contour’s bounding box (for uniformity purposes).
Finally, in order to accurately estimate the maximum achiev-
able visibility we compute an initial ϑmax with the set of
Nc cameras, we increase Nc and compute ϑmax again and
we repeat this process until no further segments are detected.
Figure 2 shows several complex shapes in which this method
has been applied with their visibility ratio vr, defined as

vr(%) = 100 · visible perimeter / total perimeter . (11)

We have computed the maximum achievable visibility of
the 1400 images from the MPEG-7 data set. As expected,
lower visibility ratios have been obtained for longer perime-
ters, which are usually more complex than the shorter ones.
We have found that the minimal visibility ratio is equal to
33.19% (see plot (d) in Fig. 2), that the average visibility
ratio of the data set is 96.90% and we have detected also
that the 66.07% of the contours are fully visible.



(a) Turtle. vr = 99.02% (b) Runner. vr = 93.40%

(c) Spring. vr = 59.41% (d) Device. vr = 33.19%

Fig. 2. Example shapes with their vr values, where segments that are
visible from the safety perimeter (dashed line circumference), for at least
one camera, are represented in thin black lines, whereas occludes segments
appear in thick red lines (best seen in color).

Regarding the optimization procedure, the convenience
and effectiveness of each term in γ is evaluated. Over
a simple undeformed squared shape, which allows us to
illustrate the differences we want to highlight, we have
performed the iterative optimization method four times with
ϑtj = 1, ∀j (i.e. each segment must be detected by at least
one camera): the first test with γ = γv , the second one in
which γσ is added to γ, a third one with γ = γv + γβ and a
last one considering all terms. The shape has been sampled
in 100 segment, cameras’ FOV is restricted to an angle of 30
degrees and a maximum range of 350 units, and a value of
w = 5 has been set for γσ . The resulting restricted visibility
graphs after the optimization are shown in Fig. 3, and Table I
indicates the values that each term in γ takes.

TABLE I
TERMS OF γ EVALUATED WITH THE UNDEFORMED SQUARED SHAPE,

FOR THE DIFFERENT TERM COMBINATIONS.

Simulation γv γσ γβ γ

γ = γv 0 5.2108E-4 0.9883 0.9889
γ = γv + γσ 0 9.0296E-5 0.9875 0.9876
γ = γv + γβ 0 9.1176E-5 0.9784 0.9785

γ = γv + γσ + γβ 0 9.1176E-5 0.9784 0.9785

One can see from these results that γv effectively drives
the system to accomplish ϑt, that γσ tends to separate the
robots and that γβ maximizes the minimum angles between
consecutive edges. Clearly, γβ is the dominant term over
γσ since in this configuration the robots are considerably

separated. It is worth mentioning that in the last two rows
of Table I the same result is shown due to this fact, and γβ
already tends to separate the cameras in this case.

The method is also tested with a contour that deforms over
time. We have selected for this purpose a bone image from
the MPEG-7 data set, and we have distorted it with increasing
distortion factors to model a deformation process. We have
sampled the shape in 100 segments, and the cameras’ FOV
has been restricted in angle and range to 60 degrees and
400 units, respectively. Figure 4 shows from (a) to (d) the
restricted visibility graphs after the iterative optimization
at several time steps, and from (e) to (h) the one after
optimizing with a set of N∗

c = Nck = 6 cameras, ∀k. It
can be seen in Fig. 4 (e) how our conservative method may
provide less efficient configurations when more cameras than
necessary are accounted: the dark blue camera barely exploits
its FOV and it only detects already detected segments.

VI. CONCLUSION AND FUTURE WORK

The method we propose allows to cover the 2D contour
of an object that undergoes deformation with a minimal set
of cameras, so that a visibility objective is accomplished.
The near-optimal positions of the cameras are computed
by means of an optimization process that minimizes a cost
function which includes inter-robot collision avoidance and
robust visibility aspects. Our approach is limited in different
ways: the proposed system is unable to work with unknown
objects, it is restricted to smooth deformations and it can not
guarantee the global optimal configurations. Future research
directions include extending our method to 3D deformable
objects and 3D spaces, considering scenarios with occluding
obstacles, allowing the cameras to go into and out of the
formation along the deformation process (depending on the
coverage requirements), introducing object resolution in the
image as an optimization index, and performing experiments
in real-world scenarios.
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